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Definition: A spatial point pattern is comprised of the
locations of events.
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California Earthquakes
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Point pattern analysis is primarily concerned with modeling
the locations of events, for example the locations of:

Trees

Birds’ nests

Ants’ nests

Earthquake epicenters

Cancer cases

Galaxies

Objectives: Point Pattern Analysis

1. To determine if the point pattern is completely random;

2. If the pattern is not completely random, fit an
explanatory point process model to the data.
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Complete Spatial Randomness

Definition: A point pattern is completely random if it is
realized from a homogeneous Poisson process.

Definition: For a homgeneous Poisson process with
intensity

1. The number of events (trees) N A , in a study region A

is Poisson distributed with mean |A|

Pr N A n 1
n!

e |A| |A|
n

2. Conditional on the number of events (trees), the event
locations are independently sampled from a uniform
distribution on A.

Definition: The intensity is equal to the mean number of
events per unit area.

Note: In ecology, the intensity is called the density. In
statistics, we use the term intensity to distinguish it from a
probability density function.
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Completely Random Pattern
Complete Spatial Randomness

7

Complete spatial randomness is the null model against
which spatial point patterns are often compared.

Completely Random Regular Clustered

Complete Spatial Randomness Regular Spacing Clustered Pattern

In Ecology:

Regular spacing may result from intraspecific competition
for limited resources;

Clustered patterns may result from:

Clustering of offspring around their parents;

Response to a heterogeneous environment.

8
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Ripley’s K-Function

Ripley’s K-function is the most effective tool for assessing
departure from complete spatial randomness.

Definition:

K r
Mean number of trees within distance r of an arbitrary tree

Estimation:

K r 1

N i j

w ijI d ij r

where
N
|A|

is the number of trees in the study region divided by the
area of the study region.

What is this?
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Consider the point pattern of trees:

Here there are 100 trees in a 10 10 region. So

100
10 10

1

10

Place a circle of radius r around an arbitrary tree:

Count the number additional of trees within the circle.

11

Repeat for each of the remaining trees:

Counting the number of additional trees within each circle.

12
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Edge Correction

For trees close to the edge of the study region, we cannot
observe the number of trees within radius r.

Here, we give the neighboring trees a weight wij equal to
one divided by the portion of the circle of radius d ij inside
the study region.
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The results are averaged over all base trees

1
N

i j

w ijI d ij r

and then divided by the estimated intensity to obtain the
estimate

K r 1

N i j

w ijI d ij r
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Plot K r against r

0.0 0.5 1.0 1.5 2.0 2.5

r

Note: Under complete spatial randomness,

K r r2
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Note: Even for strong departures from complete spatial
randomness, the difference between the empirical
K-function and its expectation under complete spatial
randomness is small.

Therefore, a plot of the K-function may not be very
informative.

Solution: Linearizing Transformation:

L r K r / r

Under complete spatial randomness

L r 0

For clustered patterns

L r 0

For regular spacing

L r 0

16
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Completely Random Clustered Regular
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r
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r

Note: By plotting the L-function against distance, all scales
of pattern can be examined.
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Point Process Models
Inhomogeneous Poisson Process

Definition: The intensity of a point process is

s lim
|ds| 0

E N ds

|ds|

The intensity can be viewed as a local density. Regions
with high intensities will tend to contain large numbers of
trees, while regions with low intensities will tend to contain
few trees.

N ds is the number of trees in a small region ds surrounding
the location s

E N ds is the mean number of trees in ds

|ds| is the area of the region ds

Thus, the intensity s is the mean number trees per unit
area, as a function of location s.
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Inhomogeneous Poisson Process

The inhomogeneous Poisson process may be used to
model the impact of spatial variation in environmental
characteristics (e.g., elevation, light intensity, nutrient
concentrations) on a point pattern.

Definition: For an inhomgeneous Poisson process with
intensity

1. The number of events (trees) N A , in a study region A
is Poisson distributed with mean

A
A

s ds

That is, the probability that the number of events N A

equal to n is

Pr N A n 1
n!

e A A n

2. Conditional on the number of events, the event
locations are independently sampled from a probability
density function proportional to s .
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Space-Varying Covariates

Let

x1 s ,x2 s , ,xp s

denote the values of p space-varying covariates at the
location s in the study region A (e.g., elevation, light
intensity, nutrient concentrations, etc.).

The impact of these space-varying covariates on a spatial
point pattern may be modeled through the intensity
function:

s; exp 0 1x1 s 2x2 s pxp s .

An inhomogeneous Poisson process with the above
intensity is called a modulated Poisson process.

Reference

Cox, D.R. (1972). The statistical analysis of dependencies
in point processes. In P.A.W. Lewis (ed.), Stochastic Point
Processes, pp. 55-66. New York: Wiley.
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Parameter Estimation

The maximum likelihood estimator is obtained by finding
that maximizes the log likelihood:

L
i 1

n

x s i
A

exp x s

where

s1,s2, , sn denote the locations of n trees in the study region
A.

x s vector of covariates at the location s in A.

Problem: This requires that the values of the covariates be
observed for:

All of the trees in the study region.

All locations in the study region.

The former may be impractical, and the later impossible to
obtain.

21

Two Approaches:

1. Rathbun (1996) Biometrics 52, 226-242.
2. Rathbun, Shiffman, and Gwaltney (2006) In Models for

Intensive Longitudinal Data. T.A. Walls and J.L.
Schafer (eds.). Oxford.
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Approach 1
Sample the covariates at a collection of sites

u1,u2, ,um

Use kriging to predict the values of the covariates at the
locations of the trees, and at the unsampled sites.

Substitute predicted values into the log likelihood:

L n 0 1

i 1

n

x si

A
exp 0 1 x s

Bias Correction

1
2 1

2 2 var x s ds

Find that maximizes the approximate log likelihood L .
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Example: Titi Hammock Data

Beech-Magnolia Forest in South Georgia

24
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Results:

25

Approach 2

Data Requirements: Covariates are observed

Locations of the trees

s1, s2, ,sn

Random locations from the study region

u1,u2, ,um

Find that maximizes the approximate log likelihood

L
i 1

n

x si
|A|
m

j 1

m

exp x uj
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Example: Ecological Momentary Assessment of Smoking

Times at which cigarettes were lit by a smoker

� ��

� � � � � 	 
 �

Time-Varying Covariates

Negative Affect

Arousal

Attention

Restlessness

27

Results

Modulate Poisson

Parameter Estimate SE

Intercept -0.05924 0.00839

Negative Affect 0.01950 0.01077

Arousal -0.01594 0.01078

Attention -0.01787 0.01198

Restlessness 0.21017 0.01577

28
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Extensions:

Obtain covariates on a thinned sample of trees. Visit each
tree and sample the covariates with known probability p.
More generally, p may depend on location.

Use alternative designs for covariate sample sites:

Stratified Random Sample

Transect Samples - Random parallel transects, and
random sites along each transect.
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